- Home
- Standard 11
- Mathematics
બે અતિવલયો $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1\,$ અને $\frac{{{y^2}}}{{{a^2}}}\,\, - \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1$ ના સામાન્ય સ્પર્શકોનું સમીકરણ .......
$y\,\, = \,\, \pm \,\,x\,\, \pm \,\,\sqrt {{b^2}\,\, - \,\,{a^2}} $
$y\,\, = \,\, \pm \,\,x\,\, \pm \,\,\sqrt {{a^2}\,\, - \,\,{b^2}} $
$y\,\, = \,\, \pm \,\,x\,\, \pm \,\,\left( {{a^2}\,\, - \,\,{b^2}} \right)$
$y\,\, = \,\, \pm \,\,x\,\, \pm \,\,\sqrt {{a^2}\,\, + \,{b^2}} $
Solution
અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, – \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ નો કોઈ સ્પર્શક$y\,\, = \,\,mx\,\, \pm \,\,\sqrt {{a^2}{m^2}\,\, – \,\,{b^2}} $
અથવા $\,y\,\, = \,\,mx\,\, + \;\,c\,$ જ્યાં $c\,\, = \,\, \pm \,\,\sqrt {{a^2}{m^2}\,\, – \,\,{b^2}} $
આ અભિવલય $\frac{{{y^2}}}{{{a^2}}}\,\, – \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1$ એ સ્પર્શ છે
જો $\frac{{{{\left( {mx\,\, + \;\,c} \right)}^2}}}{{{a^2}}}\,\, – \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1\,$ સમીકરનને સમાન તોહોય અથવા
${x^2}\,\left( {{b^2}{m^2}\,\, – \,\,{a^2}} \right)\,\, + \,\,2{b^2}\,\,mcx\,\, + \;\,\left( {{c^2}\,\, – \,\,{a^2}} \right)\,\,{b^2}\,\, = \,\,0\,$ દ્રીધાત સમીકરણ સમાન બીજ ધરાવે તો
$ 4b^{4}\, m^{2}c^{2} = 4(b^{2}m^{2} – a^{2}) (c^{2} – a^{2})b^{2}$
$c^{2} = a^{2} – b^{2}m^{2} a^{2} m^{2} – b^{2} = a^{2} – b^{2}m^{2}$ $ (c^{2} = a^{2}m^{2} – b^{2})$ મૂકતાં
$m^{2} (a^{2} + b^{2} ) = a^{2} + b^{2} ==> m = \pm 1$