જો $\mathrm{e}_{1}$ અને $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની ઉકેન્દ્રીતા હોય અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો $\mathrm{k}$ મેળવો.
$15$
$14$
$17$
$16$
વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. રેખા $2x + y = 1$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$નો સ્પર્શક છે. જો આ રેખા એ ખૂબ જ નજીકની નિયામિકા અને $x$-અક્ષોના છેદબિંદુમાંથી પસાર થતી હોય, તો અતિવલયની ઉત્કેન્દ્રતા મેળવો.
જો અતિવલય એ બિંદુ $\mathrm{P}(10,16)$ માંથી પસાર થાય છે અને તેનું શિરોબિંદુ $(\pm 6,0)$ હોય તો બિંદુ $P$ આગળના અભિલંભનું સમીકરણ મેળવો.
જેથી નાભિઓ $(6, 5), (-4, 5)$ હોય અને ઉત્કેન્દ્રતા $5/4$ હોય તેવા અતિવલયનું સમીકરણ :
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(0,\,\pm 13),$ અનુબધ્ધ અક્ષની લંબાઈ $24$
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ માટે જો $'\alpha '$ ને બદલવામાં આવે છે તો . . .. અચળ રહે છે .