જો  $\mathrm{e}_{1}$ અને  $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની  ઉકેન્દ્રીતા હોય  અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $15$

  • B

    $14$

  • C

    $17$

  • D

    $16$

Similar Questions

વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. રેખા $2x + y = 1$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$નો સ્પર્શક છે. જો આ રેખા એ ખૂબ જ નજીકની નિયામિકા અને $x$-અક્ષોના છેદબિંદુમાંથી પસાર થતી હોય, તો અતિવલયની ઉત્કેન્દ્રતા મેળવો.

જો અતિવલય એ બિંદુ $\mathrm{P}(10,16)$ માંથી પસાર થાય છે અને તેનું શિરોબિંદુ $(\pm 6,0)$ હોય તો બિંદુ $P$ આગળના અભિલંભનું સમીકરણ મેળવો.

  • [JEE MAIN 2020]

જેથી નાભિઓ $(6, 5), (-4, 5)$ હોય અને ઉત્કેન્દ્રતા $5/4$ હોય તેવા અતિવલયનું સમીકરણ :

આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  નાભિઓ $(0,\,\pm 13),$ અનુબધ્ધ અક્ષની લંબાઈ $24$

અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ માટે જો $'\alpha '$ ને બદલવામાં આવે છે તો  . .  ..  અચળ રહે છે .

  • [IIT 2003]