$P$ એ પરવલય $y^2 = 12x$ અને અતિવલય $8x^2 -y^2 = 8$ ના સામાન્ય સ્પર્શકોનું છેદબિંદુ છે. જો $S$ અને $S'$ એ અતિવલયની નાભીઓ હોય જ્યાં $S$ એ ધન $x-$ અક્ષ પર હોય તો બિંદુ $P$ એ $SS'$ ને ................ ગુણોત્તરમાં વિભાજિત કરે છે .
$2 : 1$
$13 : 11$
$5 : 4$
$14 : 13$
$a$ અને $b$ એ અનુક્રમે અતિવલય જેની ઉત્કેન્દ્રતા સમીકરણ $9e^2 - 18e + 5 = 0$ ને સંતોષે છે તેની અર્ધ મુખ્યઅક્ષ અને અર્ધ અનુબધ્ધઅક્ષ છે જેની જો અતિવલયની નાભિ $S(5, 0)$ અને અનુરૂપ નિયમિકા $5x = 9$ હોય તો $a^2 - b^2$ =
જો $ x = 9 $ એ અતિવલય $ x^2 - y^2 = 9$ ની સ્પર્શ જીવા હોય, તો અનુરૂપ સ્પર્શકોની જોડનું સમીકરણ...
ધારો કે $H : \frac{x^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1, a >0, b >0$ એ એક એવો અતિવલય છે કે જેની મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષની લંબાઈનો સરવાળો $4(2 \sqrt{2}+\sqrt{14})$ છે. જો $H$ ની ઉત્કેન્દ્રતા $\frac{\sqrt{11}}{2}$ હોય,તો $a ^{2}+ b ^{2}$ નું મૂલ્ય $\dots\dots\dots$છે.
અતિવલય $4x^2 - 9y^2 - 36 = 0$ ની નાભિઓ :
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(\pm 4,\,0),$ નાભિલંબની લંબાઈ $12$