10-2. Parabola, Ellipse, Hyperbola
hard

$P$ એ પરવલય $y^2 = 12x$ અને અતિવલય $8x^2 -y^2 = 8$ ના સામાન્ય સ્પર્શકોનું છેદબિંદુ છે. જો $S$ અને $S'$ એ અતિવલયની નાભીઓ હોય જ્યાં $S$ એ ધન $x-$ અક્ષ પર હોય તો બિંદુ $P$  એ $SS'$ ને ................ ગુણોત્તરમાં વિભાજિત કરે છે .

A

$2 : 1$

B

$13 : 11$

C

$5 : 4$

D

$14 : 13$

(JEE MAIN-2019)

Solution

Tangents ${y^2} = 12x \Rightarrow y = 2x + \frac{3}{m}$

$\frac{{{x^2}}}{1} – \frac{{{y^2}}}{8} = 1 \Rightarrow y = mx \pm \sqrt {{m^2} – 8} $ 

Common tangent given

$\therefore \frac{3}{{m =  \pm \sqrt {{m^2} – 8} }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{{x^2}}}{1} – \frac{{{y^2}}}{8} = 1$

${m^4} – 8{m^2} – 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,e = 3$

$m =  \pm 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,ae = 3$

$\therefore y = 3x + 1\,\,\,\,\,P\left( { – \frac{1}{3},0} \right)\,\,\,\,\,S = \left( {3,0} \right)$

$y =  – 3x – 1$ $P$ divies $SS'$ in $5:4$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.