બિંદુ $P(3, 4)$ માંથી ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$પર દોરેલા સ્પર્શકો ઉપવલયને બિંદુઓ $A $ અને $B$ આગળ સ્પર્શક છે. ત્રિકોણ નું લંબકેન્દ્ર .....
$\left( {5,\,\,\frac{8}{7}} \right)$
$\left( {\frac{7}{5},\,\,\frac{{25}}{8}} \right)$
$\left( {\frac{{11}}{5},\,\,\frac{8}{5}} \right)$
$\left( {\frac{8}{{25}},\,\,\frac{7}{5}} \right)$
જો ઉપવલયના નાભીલંબની લંબાઈ $4\,એકમ$ અને નાભી અને મુખ્યઅક્ષ પરના નજીકના શિરોબિંદુ વચ્ચેનું અંતર $\frac {3}{2}\,એકમ$ હોય તો ઉત્કેન્દ્ર્તા મેળવો.
બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
ધારો કે $S$ અને $S'$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$પરંતુ ચલ બિંદુ $P$ છે. જો ત્રિકોણ $PSS'$ નું ક્ષેત્રફળ $A$ નું મહત્તમ મૂલ્ય : ............. ચો. એકમ
જો $E$ એ ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ અને $C$ એ વર્તૂળ ${x^2} + {y^2} = 9$ દર્શાવે છે. જો બિંદુઓ $P$ અને $Q$ અનુક્રમે $(1, 2)$ અને $(2, 1)$ હેાય તો
જો $\alpha$ અને $\beta$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ની નાભિજીવાના અંત્યબિંદુઓના ઉત્કેન્દ્રીકરણ હોય, તો $tan\ \alpha /2. tan\ \beta/2 = ....$