${\text{c}}$ ના જે મુલ્ય માટે $y\, = \,\,\,4x\,\, + \;\,c$ એ વક્ર $\frac{{{x^2}}}{4}\,\, + \;\,{y^2}\, = \,\,1\,\,$ ને સ્પર્શે તો મુલ્યોની સંખ્યા........
$0$
$1$
$2$
અનંત
જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :
જો ઉપવલય $x^2 + 2y^2 = 2$ શિરોબિંદુઓ સિવાયના બધા બિંદુઓથી સ્પર્શક દોરવામાં આવે તો બધા સ્પર્શકોના મધ્યબિંદુનો બિંદુપથ ............. થાય
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
ઉપવલય $2x^2 + 5y^2 = 20$ ની સાપેક્ષે બિંદુ $(4, -3)$ નું સ્થાન :
અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.