જો બિંદુઓ $A$ અને $B$ ના યામો અનુક્રમે $(\sqrt{7}, 0)$ અને $(-\sqrt{7}, 0)$ હોય અને વક્ર $9 x^{2}+16 y^{2}=144$ પરનું કોઈ બિંદુ $P$ આવેલ હોય તો $PA + PB$ ની કિમત શોધો
$8$
$6$
$16$
$9$
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
ઉપવલય $\, \frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1\,\,$ પર દોરેલા લંબ સ્પર્શકો ક્યા વક્ર પર છેદશે?
અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.
જો ઉપવલય $x^2 + 2y^2 = 2$ શિરોબિંદુઓ સિવાયના બધા બિંદુઓથી સ્પર્શક દોરવામાં આવે તો બધા સ્પર્શકોના મધ્યબિંદુનો બિંદુપથ ............. થાય
જો રેખા $x -2y = 12$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ના બિંદુ $\left( {3,\frac{-9}{2}} \right)$ આગળનો સ્પર્શક હોય તો ઉપવલયના નાભીલંબની લંબાઈ =