પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.
$\frac{2}{\sqrt{3}}$
$\frac{2 \sqrt{2}}{3}$
$\frac{2 }{3}$
$\frac{\sqrt{2}}{3}$
રેખા $x = at^2 $ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ને વાસ્તવિક બિંદઓમાં ક્યારે મળે ?
ઉપવલય $2 x^{2}+3 y^{2}=5$ પર બિંદુ $(1,3)$ માંથી દોરવામાં આવેલ સ્પર્શકોનો જોડ વચ્ચેનો લઘુકોણ મેળવો.
જે ઉપવલયનું કેન્દ્ર $(2, -3)$ આગળ, નાભિકેન્દ્ર $(3, -3)$ આગળ અને એક શિરોબિંદુ $(4, -3)$ આગળ હોય તેવા ઉપવલયનું સમીકરણ શોધો.
ઉપવલયની અર્ધ ગૈાણ અક્ષ $OB$ અને $F$ અને $F'$ તેની નાભિઓ છે.જો $FBF'$ એ કાટકોણ હોય તો તેની ઉત્કેન્દ્રતા મેળવો.
ધારો કે વક્રો $4\left(x^{2}+y^{2}\right)=9$ અને $y^{2}=4 x$ ના સામાન્ય સ્પર્શકો $Q$ બિંદુમાં છેદે છે. ધારે કે $O$ કેન્દ્રવાળા એક ઉપવલયના ગૌણ અક્ષ અને પ્રધાન અક્ષ ની અર્લંધબાઈઓ અનુક્રમે $OQ$ અને $6$ છે.જો આ ઉપવલય ઉત્કેન્દ્રતા $e$ અને નાભિલંબની લંબાઈ $l$ હોય, તો $\frac{l}{ e ^{2}}=\dots\dots\dots$