- Home
- Standard 11
- Mathematics
વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. વર્તૂળ અને અતિવલયના ધન ઢાળ વાળા સામાન્ય સ્પર્શકનું સમીકરણ ......
$2x\,\, - \,\,\sqrt 5 \,y\,\, - \,\,20\,\, = \,\,0$
$2x\,\, - \,\,\sqrt 5 \,y\,\, + \,\,4\,\, = \,\,0$
$3x - 4y + 8 = 0$
$4x - 3y + 4 = 0$
Solution

પરવલય પર બિંદુ $P(3sec\ \theta , 2tan\ \theta)$ લો.
સ્પર્શકનું સમીકરણ $\frac{{{\rm{x}}\,{\rm{sec}}\theta }}{{\rm{3}}}\,\, – \,\,\frac{{y\,\tan \,\theta }}{2}\,\, = \,1\,$
$\,|p|\,\, = \,\,r\,\,\,\,\,\,\,\,\frac{{\left| {\frac{4}{3}\,\,\sec \,\,\theta \,\, – \,\,1} \right|}}{{\sqrt {\frac{{{{\sec }^2}\theta }}{9}\, + \;\,\frac{{{{\tan }^2}\theta }}{4}} }}\,\, = \,\,4$
$ \Rightarrow \,\,\frac{{16}}{9}\,\,{\sec ^2}\theta \,\, + \;\,1\,\, – \,\,\frac{8}{3}\,\,\sec \theta \,\, = \,16\,\,\left( {\frac{{4\,{{\sec }^2}\theta \,\, + \;\,9\,\,{{\tan }^2}\,\,\theta }}{{4\,\, \times \,\,9}}} \right)$
$16\,{\sec ^2}\theta \,\, + \;\,9\,\, – \,\,24\,\sec \,\theta \,\, = \,\,52\,\,{\sec ^2}\theta \,\, – \,\,36$
$ \Rightarrow 36\,\,{\sec ^2}\theta \,\, + \,24\,\,\sec \,\theta \,\, – \,\,45\,\, = \,\,0$
$ \Rightarrow \,\,12\,\,{\sec ^2}\,\,\theta \,\, + \;\,8\,\,\sec \,\theta \,\, – \,\,15\,\, = \,\,0$
$\begin{array}{l}
\Rightarrow \,\,12\,\,{\sec ^2}\,\,\theta \,\, + \;\,18\,\,\sec \theta \,\, – \,\,10\,\,\sec \,\,\theta \,\, – \,\,15\,\, = \,\,0\\
\Rightarrow \,\,\left( {6\,\,\sec \,\,\theta \,\, – \,\,5} \right)\,\,\left( {2\,\,\sec \theta \,\, + \,\,3} \right)\,\, = \,\,0
\end{array}$
$\sec \theta \,\, = \,\,\frac{5}{6}\,$ (શકય નથી) $,\,\,\,\,\sec \,\,\theta \,\, = \,\, – \frac{3}{2}$
$\tan \,\,\theta \,\, = \,\, \pm \,\,\sqrt {\frac{9}{4}\,\, – \,\,1} \,\, = \,\, \pm \,\,\frac{{\sqrt 5 }}{2}\,\,\,\,$
(ઢાળ ધન છે.${\, \Rightarrow \,\,\tan \,\,\theta \,\, = \,\, – \frac{{\sqrt 5 }}{2}}$)
આથી માંગેલું સમીકરણ $ – \frac{{3x}}{{2\,\, \times \,\,3}}\,\,\, + \,\,\frac{{y\sqrt 5 }}{{2\,\, \times \,\,2}}\,\, = \,\,1\,\,\, \Rightarrow \,\,2x\,\, – \,\,\sqrt 5 y\,\, + \;\,4\,\, = \,\,0$