${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........
$\frac{{be}}{{1\,\, + \;\,e}}$
$\frac{{b\,\,\left( {1\,\, + \;\,e} \right)}}{e}$
$\frac{{ae}}{{1\,\, + \;\,e}}$
આપેલ પૈકી એક પણ નહિ
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
જો ઉગમ બિંદુ પરથી ઉપવલય $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$ નાં અભિલંબનું મહત્તમ અંતર $1$ હોય,તો ઉપવલયની ઉત્કેન્દ્રતા $.........$ છે.
ઉપવલયની ઉકેન્દ્રિતા $\frac{1}{2}$ અને એક નાભિના યામ $P\left( {\frac{1}{2},\;1} \right)$ છે.જો બિંદુ $P$ ની નજીકની એક નિયામીકા એ વર્તૂળ ${x^2} + {y^2} = 1$ અને અતિવલય ${x^2} - {y^2} = 1$ નો સામાન્ય સ્પર્શક બને છે ,તો ઉપવલયનું પ્રમાણિત સમીકરણ મેળવો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ કેન્દ્ર ઊગમબિંદુ, પ્રધાન અક્ષ $y$-અક્ષ પર હોય અને બિંદુઓ $(3, 2)$ અને $(1, 6)$ માંથી પસાર થાય.
વર્તુળની ત્રિજ્યા મેળવો કે જેનું કેન્દ્ર $(0, 3)$ હોય અને જે ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભીમાંથી પસાર થાય છે .