બિંદુ $(2, 3)$ માંથી વર્તૂળ $2\ (x^2 + y^2) - 7x + 9y - 11 = 0$ પર દોરેલા સ્પર્શકની લંબાઈ :
$18$
$14$
$\sqrt {14} $
$\sqrt {28} $
ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.
ઉગમબિંદુમાંથી વર્તૂળ $x^2 + y^2 + 20 (x + y) + 20 = 0$ ના સ્પર્શકોની જોડ દોરી સ્પર્શકોની જોડનું સમીકરણ મેળવો.
બિંદુ $ (0, 1)$ માંથી વર્તૂળ $x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ . . . . . .
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :
ધારો કે વર્તુળ $x^{2}+y^{2}+a x+2 a y+c=0$ $,(a < 0)$ એ $x-$ અક્ષ તથા $y-$અક્ષ સાથે અનુક્રમે $2 \sqrt{2}$ તથા $2 \sqrt{5}$ જેટલો અંતઃખંડ બનાવે છે. તો ઊગમબિંદુ થી રેખા $x +2 y =0$ ને લંબ હોય એવા આ વર્તુળનાં સ્પર્શકનું લઘુત્તમ અંતર ...... છે.