- Home
- Standard 11
- Mathematics
જો વર્તુળો $x^{2}+y^{2}+6 x+8 y+16=0$ અને $x^{2}+y^{2}+2(3-\sqrt{3}) x+x+2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k >0$ એ બિંદુ $P(\alpha, \beta)$ આગળ અંદરની બાજુએ સ્પર્શે છે તો $(\alpha+\sqrt{3})^{2}+(\beta+\sqrt{6})^{2}$ ની કિમંત મેળવો.
$24$
$298$
$25$
$56$
Solution
The circle $x^{2}+y^{2}+6 x+8 y+16=0$ has centre $(-3,-4)$ and radius 3 units.
The circle $x^{2}+y^{2}+2(3-\sqrt{3}) x+2(4-\sqrt{6}) y=$ $k+6 \sqrt{3}+8 \sqrt{6}, k>0$ has centre $(\sqrt{3}-3, \sqrt{6}-4)$ and radius $\sqrt{k+34}$
$\because \quad$ These two circles touch internally hence
$\sqrt{3+6}=|\sqrt{k+34}-3|$
Here, $k=2$ is only possible $(\because k>0)$
Equation of common tangent to two circles is $2 \sqrt{3} x+2 \sqrt{6} y+16+6 \sqrt{3}+8 \sqrt{6}+k=0$
$\because k=2$ then equation is
$x+\sqrt{2} y+3+4 \sqrt{2}+3 \sqrt{3}=0 \quad \ldots \text { (i) }$
$\because \quad(\alpha, \beta)$ are foot of perpendicular from $(-3,-4)$
To line $(i)$ then
$\frac{\alpha+3}{1}=\frac{\beta+1}{\sqrt{2}}=\frac{-(-3-1 \sqrt{2}+3+1 \sqrt{2}+3 \sqrt{3})}{1+2}$
$\therefore \quad \alpha+3=\frac{\beta+4}{\sqrt{2}}=-\sqrt{3}$
$(\alpha+\sqrt{3})^{2}=9 \text { and }(\beta+\sqrt{6})^{2}=16$
$\therefore (\alpha+\sqrt{3})^{2}+(\beta+\sqrt{6})^{2}=25$