ઉપવલય $\frac{{{x^2}}}{4}\,\, + \,\,\frac{{{y^2}}}{{12}}\,\, = \,1$ ના બિંદુ $(1/4, 1/4)$ આગળના સ્પર્શકનું સમીકરણ :
$3x + y = 48$
$3x + y = 3$
$3x + y = 16$
એકપણ નહિ
જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.
ઉપવલય $x^2 + 2y^2 = 2$ ના નાભિલંબના અંત્યબિંદુઓ આગળના સ્પર્શક દ્વારા બનતા ચતુષ્કોણ નું ક્ષેત્રફળ મેળવો.
જો રેખા $x -2y = 12$ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ના બિંદુ $\left( {3,\frac{-9}{2}} \right)$ આગળનો સ્પર્શક હોય તો ઉપવલયના નાભીલંબની લંબાઈ =
કોઈ $\theta \in\left(0, \frac{\pi}{2}\right)$ માટે, જો અતિવલય $x^{2}-y^{2} \sec ^{2} \theta=10$ ની ઉત્કેન્દ્ર્તા એ ઉપવલય $x^{2} \sec ^{2} \theta+y^{2}=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{5}$ ગણી હોય તો ઉપવલયની નાભીલંબની લંબાઇ શોધો.
જેનું કેન્દ્ર ઉંગમબિંદુ હોય તથા અક્ષો યામાક્ષો પર હૉય અને બિંદુ $(4,-1)$ અને $(-2, 2)$ માંથી પસાર થતાં હોય તેવા ઉપવલયની ઉત્કેન્દ્રતા મેળવો.