જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ અને $\left[-\frac{1}{3}, \frac{1}{3}\right]$
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ અને $[1,3]$
$[1,3]$ અને $[1,3]$
$[1,3]$ અને $\left[-\frac{1}{3}, \frac{1}{3}\right]$
જો પરવલય $y^2 = x$ એ બિંદુ $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ અને ઉપવલય $x^2 + 2y^2 = 1$ આગળનો સ્પર્શક હોય તો $a$ =
જો ઉપવલય $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ પરના બિંદુએથી બનાવેલ સ્પર્શક યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તથા $O$ એ ઉંગમબિંદુ હોય તો ત્રિકોણ $OAB$ નું ન્યૂનતમ ક્ષેત્રફળ ચો. એકમ માં મેળવો.
શાંકવ $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ ને રેખા $x\cos \alpha \,\, + \,y\sin \,\alpha \,\, = \,p\,\,$ ક્યારે સ્પર્શશે?
ઉપવલય $\frac{{{x^2}}}{9}\,\, + \,\,\frac{{{y^2}}}{4}\,\, = 1$ ની જીવા $PQ$ તેના કેન્દ્ર આગળ કાટખૂણે છે. $P$ અને $Q$ આગળ દોરેલા સ્પર્શકોના છેદબિંદુના બિંદુપથ કેવો હોય ?