ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
$4$
$3$
$\sqrt {12} $
$\frac{7}{2}$
જો ઉપવલયની નાભીલંબના એક અંત્યબિંદુમાંથી પસાર થતો અભિલંબએ અનુબધ્ધ અક્ષની પરથી પસાર થતી હોય તો ઉપવલયની ઉત્કેન્દ્ર્તા $e$ માટે નીચેનામાંથી શું સાચું છે?
જો સુરેખા $y\,\, = \,\,4x\,\, + \;\,c$ એ ઉપવલય $\frac{{{x^2}}}{8}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય, તો $c\,\, = \,...........$
જો બે બિંદુઓ $(x_1, y_1)$ અને $(x_2y_2)$ માંથી ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પર દોરેલા સ્પરશકોની સ્પર્શ જીવાઓ કાટખૂણે હોય, તો $\frac{{{x_1}{x_2}}}{{{y_1}{y_2}}}\,\, = \,\,..........$
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ અને અતિવલય $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ ની નાભિઓ સમાન હોય,તો ${b^2}$= . . .. . ..