ધારો કે ઉપવલય $\frac{x^2}{9}+\frac{y^2}{4}=1$ પરનું એક બિંદુ $P$ છે. ધારો કે બિંદુ $P$ માંથી પસાર થતી અને $y$-અક્ષને સમાંતર રેખા, વર્તુળ $x^2+y^2=9$ ને બિંદુ $\mathrm{Q}$ માં એવી રીતે મળે છે કે જેથી $\mathrm{P}$ અને $\mathrm{Q}, x$-અક્ષની એકન બાજુએ આવે છે. તો $\mathrm{P}$ ઉપવલય પર ગતિ કરે ત્યારે $\mathrm{PQ}$ પરના, $\mathrm{PR}: \mathrm{RQ}=4: 3$ થાય તેવા બિંદુ $\mathrm{R}$ ના બિંદુપથની ઉત્કેન્દ્રતા........................ છે .
$\frac{11}{19}$
$\frac{13}{21}$
$\frac{\sqrt{139}}{23}$
$\frac{\sqrt{13}}{7}$
અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....
ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
જો $A = [(x,\,y):{x^2} + {y^2} = 25]$ અને $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, તો $A \cap B$ માં . .. બિંદુ હોય .
ઉપવલય $\frac{{{x^2}}}{{36}}\,\, + \;\,\frac{{{y^2}}}{{49}}\,\, = \,\,1$ ના નાભિલંબની લંબાઈ મેળવો.