અતિવલયના નાભિકેન્દ્ર આગળ નાભિલંબ કાટખૂણો બનાવે, તો તેની ઉત્કેન્દ્રતા :
$\sqrt 3 \,\, + \;\,1$
$\sqrt 2 \,\, + \;\,1$
$ - \sqrt 3 \,\, + \;\,\sqrt 2 $
$2$
વિધાન $ (A) $ : બિંદુ $(5, -4)$ એ અતિવલય $y^2 - 9x^2 + 1 = 0 $ ની અંદર આવેલું છે.
કારણ ${\rm{(R)}}$ બિંદુઓ ${\rm{ (}}{{\rm{x}}_{\rm{1}}}{\rm{, }}{{\rm{y}}_{\rm{1}}}{\rm{)}}$ એઅતિવલય ${\rm{ }}\,\,\frac{{{x^2}}}{{{a^2}}}\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1$ ની અંદર આવેલું , તો $\frac{{x_{^1}^2}}{{{a^2}}}\, - \,\,\frac{{y_1^2}}{{{b^2}}}\, - \,\,1\,\, < \,\,0$
અતિવલય $x^2 - 2y^2 - 2 = 0$ ના કોઇ બિંદુ પરથી તેના અનંત સ્પર્શકો પર દોરેલા લંબની લંબાઈનો ગુણાકાર કેટલો થાય ?
ધારો કે અતિવલય $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ નો નાભિલંબ અતિવલયના કેન્દ્ર સાથે $\frac{\pi}{3}$ સાથે ખૂણો આંતરે છે. જો $b^2$ બરાબર $\frac{l}{m}(1+\sqrt{\mathrm{n}})$ થાય, જ્યાં $l$ અને $\mathrm{m}$ પરસ્પર અવિભાજ્ય સંખ્યાઓ છે,તો $\mathrm{l}^2+\mathrm{m}^2+\mathrm{n}^2=$___________.
અતિવલય $H : x^{2}-y^{2}=1$ અને ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b >0$, માટે ધારોકે
$(1)$ $E$ ની ઉત્કેન્દ્રતા એ $H$ ની ઉત્કેન્દ્રતાની વ્યસ્ત છે, અને
$(2)$ રેખા $y=\sqrt{\frac{5}{2}} x+ K$ એ $E$ અને $H$ નો સામાન્ય સ્પર્શક છે.
તો $4\left(a^{2}+b^{2}\right)=$ ...........
જો વર્તૂળએ લંબાતિવલય $xy = 1$ ને બિંદુ $(x_r, y_r)$ જ્યાં $r = 1, 2, 3, 4$ છેદે છે , તો :