10-2. Parabola, Ellipse, Hyperbola
medium

આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  શિરોબિંદુઓ $(0,\,\pm 3),$ નાભિઓ $(0,\,±5)$

A

$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

B

$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

C

$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

D

$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

Solution

Vertices $(0,\,\pm 3),$ foci $(0,\,±5)$ 

Here, the vertices are on the $y-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

since the vertices are $(0,\,\pm 3), a=3$

since the foci are $(0,\,\pm 5), c=5$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore 3^{2}+b^{2}=52$

$\Rightarrow b^{2}=25-9=16$

Thus, the equation of the hyperbola is $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.