- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : શિરોબિંદુઓ $(0,\,\pm 3),$ નાભિઓ $(0,\,±5)$
A
$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
B
$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
C
$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
D
$\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
Solution
Vertices $(0,\,\pm 3),$ foci $(0,\,±5)$
Here, the vertices are on the $y-$ axis.
Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
since the vertices are $(0,\,\pm 3), a=3$
since the foci are $(0,\,\pm 5), c=5$
We know that $a^{2}+b^{2}=c^{2}$
$\therefore 3^{2}+b^{2}=52$
$\Rightarrow b^{2}=25-9=16$
Thus, the equation of the hyperbola is $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
Standard 11
Mathematics