ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
$9$
$1$
$5$
$7$
જો ઉપવલયની બે નાભિઓ વચ્ચેનું અંતર બરાબર તેની પ્રધાન અક્ષ હોય, તો ઉપવલયની ઉત્કેન્દ્રતા =
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ ${\theta _1}\,$ અને ${\theta _2}$ ની જીવા . . . બિંદુ આગળ કાટખૂણે બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$ )
પ્રકાશનું કિરણ બિંદુ $(2,1)$ માંથી પસાર થાય ને $y$ - અક્ષ પરનું બિંદુ $P$ થી પરાવર્તિત પામી ને બિંદુ $(5,3)$ માંથી પસાર થાય છે. પરાવર્તિત કિરણ એ ઉપવલયની નિયામિકા બને છે કે જેની ઉત્કેન્દ્રિતા $\frac{1}{3}$ છે અને નજીકના નાભીનું આ નિયામિકા થી અંતર $\frac{8}{\sqrt{53}}$ હોય તો બીજી નિયમિકાનું સમીકરણ મેળવો.
ધારોકે $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ અને $S$ એ ઉપવલય $9 x^2+4 y^2=36$ પરના ચાર બિંદુઓ છે.ધારોકે $PQ$ અને $RS$ પરસ્પર લંબ છે તથા ઉગમબિંદુમાંથી પસાર થાય છે.જો $\frac{1}{(P Q)^2}+\frac{1}{(R S)^2}=\frac{p}{q}$,જ્યાં $p$ અને $q$ પરસ્પર અવિભાજ્ય છે, તો $p+q=.........$
$\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\left( {a\,\, < \,\,b} \right)$ ની બે નાભિઓ $S$ અને $S'$ હોય અને જો ઉપવલય અને ઉપવલય પરનું બિંદુ $P\ (x_1, y_1)$ હોય તો $SP + S'P = ……$