ધારો કે $E$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$અને $C$ એ વર્તૂળ $x^2 + y^2 = 9$ છે. $P$ અને $Q$ બરાબર અનુક્રમે બિંદુઓ $(1, 2)$ અને $(2, 1)$ લઈએ, તો
$Q$ એ $C$ ની અંદર પરંતુ $E$ ની બહાર આવેલું હોય.
$Q$ એ $C$ અને $E$ બંનેની બહાર આવેલું હોય.
$P$ એ $C$ અને $E$ બંનેની અંદર આવેલું હોય.
$P$ એ $C$ ની અંદર પરંતુ $E$ ની બહાર આવેલું હોય.
ધારો કે $L$ એ વક્રો $4 x^{2}+9 y^{2}=36$ અને $(2 x)^{2}+(2 y)^{2}=31$ ની સામાન્ય સ્પર્શરેખા છે. તો રેખા $L$ ના ઢાળનો વર્ગ ....... થાય.
જો $E$ એ ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ અને $C$ એ વર્તૂળ ${x^2} + {y^2} = 9$ દર્શાવે છે. જો બિંદુઓ $P$ અને $Q$ અનુક્રમે $(1, 2)$ અને $(2, 1)$ હેાય તો
જે ઉપવલયની અક્ષો યામાક્ષો હોય અને જે બિંદુ $(-3, 1)$માંથી પસાર થતું હોય અને ઉત્કેન્દ્રીતા $\sqrt {2/5} $ હોય, તે ઉપવલયનું સમીકરણ :
જો ઉપવલયના ગૌણ અક્ષની લંબાઈ એ નાભિઓ વચ્ચેના અંતરનું અડધું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.................... થાય.
ઉપવલય $\frac{{{x^2}}}{{27}} + {y^2} = 1$ પર બિંદુ $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ કે જયાં $\theta \in (0,\;\pi /2)$ માંથી સ્પર્શક દોરવામાં આવે છે.તો $\theta $ ની . . . . કિંમત માટે સ્પર્શકે અક્ષો પર બનાવેલ અંત:ખંડનો સરવાળો ન્યૂનતમ થાય.