$15$ સેમી લંબાઈનો સળિયો $AB$ યામાક્ષો પર એ રીતે મૂકેલ છે કે અંત્યબિંદુ $A$ $x-$ અક્ષ પર અને $B$ $y -$ અક્ષ પર રહે. સળિયા પર $ P(x, y)$ બિંદુ એ રીતે લીધેલ છે કે $AP = 6$ સેમી હોય. સાબિત કરો કે $P$ નો બિંદુગણ ઉપવલય છે.
Let $AB$ be the rod making an angle $\theta $ with $OX$ as shown in Fig. and $P (x, \,y)$ the point on it such that $AP =6\, cm$
since $AB =15\,cm ,$ we have
$P B=9\, cm$
From $P$ draw $PQ$ and $PR$ perpendiculars on $y-$ axis and $x-$ axis, respectively.
From $\Delta PBQ$ , $\cos \theta=\frac{x}{9}$
From $\Delta PRA$, $\sin \theta=\frac{y}{6}$
since $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\left(\frac{x}{9}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$
or $\frac{x^{2}}{81}+\frac{y^{2}}{36}=1$
Thus the locus of $P$ is an cllipse.
વર્તુળની ત્રિજ્યા મેળવો કે જેનું કેન્દ્ર $(0, 3)$ હોય અને જે ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભીમાંથી પસાર થાય છે .
બિંદુ $P$ એવી રીતે ખસે છે કે જેથી $(ae, 0)$ અને $(-ae, 0)$ બિંદુથી તેના અંતરનો સરવાળો હંમેશા $2a$ રહે છે. તો $P$ નો બિંદુપથ શોધો.(જ્યાં $0 < e < 1$).
$x = 2 (cos\, t + sin\, t), y = 5 (cos\, t - sin\, t) $ દ્વારા દર્શાવેલો શાંકવ .....
એક ચલ બિંદુનું બિંદુ $(-2, 0)$ થી અંતરેએ રેખા $x = - \frac{9}{2}$ ના અંતર કરતા $\frac{2}{3}$ ગણુ હોય તો આ ચલ બિંદુનું બિંદુપથ . . . . . . થાય.
જો ઉપવલય $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ એ રેખા $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ ને $x$- અક્ષ પર મળે છે અને રેખા $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ ને $y$-અક્ષ પર મળે છે તો ઉપવલયની ઉકેન્દ્રીતા . . . થાય.