10-2. Parabola, Ellipse, Hyperbola
hard

$15$ સેમી લંબાઈનો સળિયો $AB$ યામાક્ષો પર એ રીતે મૂકેલ છે કે અંત્યબિંદુ $A$ $x-$ અક્ષ પર અને $B$ $y -$ અક્ષ પર રહે. સળિયા પર $ P(x, y)$ બિંદુ એ રીતે લીધેલ છે કે $AP = 6$ સેમી હોય. સાબિત કરો કે $P$ નો બિંદુગણ ઉપવલય છે. 

Option A
Option B
Option C
Option D

Solution

Let $AB$ be the rod making an angle $\theta $ with $OX$ as shown in Fig. and $P (x, \,y)$ the point on it such that   $AP =6\, cm$

since        $AB =15\,cm ,$   we have

                $P B=9\, cm$

From $P$ draw $PQ$ and $PR$ perpendiculars on $y-$ axis and $x-$ axis, respectively.

From           $\Delta PBQ$ ,     $\cos \theta=\frac{x}{9}$

From           $\Delta PRA$,    $\sin \theta=\frac{y}{6}$

since $\cos ^{2} \theta+\sin ^{2} \theta=1$

$\left(\frac{x}{9}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$

or         $\frac{x^{2}}{81}+\frac{y^{2}}{36}=1$

Thus the locus of $P$ is an cllipse.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.