- Home
- Standard 11
- Mathematics
$15$ સેમી લંબાઈનો સળિયો $AB$ યામાક્ષો પર એ રીતે મૂકેલ છે કે અંત્યબિંદુ $A$ $x-$ અક્ષ પર અને $B$ $y -$ અક્ષ પર રહે. સળિયા પર $ P(x, y)$ બિંદુ એ રીતે લીધેલ છે કે $AP = 6$ સેમી હોય. સાબિત કરો કે $P$ નો બિંદુગણ ઉપવલય છે.
Solution

Let $AB$ be the rod making an angle $\theta $ with $OX$ as shown in Fig. and $P (x, \,y)$ the point on it such that $AP =6\, cm$
since $AB =15\,cm ,$ we have
$P B=9\, cm$
From $P$ draw $PQ$ and $PR$ perpendiculars on $y-$ axis and $x-$ axis, respectively.
From $\Delta PBQ$ , $\cos \theta=\frac{x}{9}$
From $\Delta PRA$, $\sin \theta=\frac{y}{6}$
since $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\left(\frac{x}{9}\right)^{2}+\left(\frac{y}{6}\right)^{2}=1$
or $\frac{x^{2}}{81}+\frac{y^{2}}{36}=1$
Thus the locus of $P$ is an cllipse.