અતિવલય $16x^2 - y^2 + 64x + 4y + 44 = 0$ ની પ્રધાનઅક્ષ અને અનુબદ્ધ અક્ષોનું સમીકરણ :
$x = 2, y + 2 = 0$
$x = 2, y = 2$
$y = 2, x + 2 = 0$
આપેલ પૈકી એક પણ નહિ
$T$ એ વક્ર $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ અને $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ નો સામાન્ય સ્પર્શક છે જે ચોથા ચરણમાંથી પસાર નથી થતો. જો $T$ એ $C _{1}$ ને ( $\left.x _{1}, y _{1}\right)$ અને $C _{2}$ ને $\left( x _{2}, y _{2}\right)$ આગળ સ્પર્શે છે તો $\left|2 x _{1}+ x _{2}\right|$ ની કિમંત $......$ થાય.
બે અતિવલયો $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1\,$ અને $\frac{{{y^2}}}{{{a^2}}}\,\, - \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1$ ના સામાન્ય સ્પર્શકોનું સમીકરણ .......
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
$\left( {1,\,\,2\,\,\sqrt 2 } \right)$માંથી અતિવલય $16x^{2} - 25y^{2} = 400$ પર દોરેલા સ્પર્શકો વચ્ચેનો ખૂણો.....