English
Hindi
9.Straight Line
medium

બિંદુ $(2, 2)$ માંથી પસાર થતી સુરેખા એ રેખાઓ $\sqrt 3 \,x\,\, + \,\,y\,\, = \,\,0$ અને $\sqrt 3 x\, - \,\,y\,\, = \,\,0$ ને $A$ અને $B$ બિંદુ આગળ છેદે છે. રેખા $AB$ નું સમીકરણ શોધો કે જેથી ત્રિકોણ $OAB$ સમબાજુ ત્રિકોણ બને -

A

$x - 2 = 0$

B

$x + y - 4 = 0$

C

$y - 2 = 0$

D

એકપણ નહિ

Solution

Given line is passing through point $(2,2)$

and intersect with $\sqrt{3} x + y =0$ and $\sqrt{3} x – y =0$

I am assuming that $O$ is the origin $AB$ so (or such) that the triangle $\triangle AOB$ is equilateral.

Given $\sqrt{3} x+y=0$, slope $=\sqrt{(3)}, \Rightarrow \alpha=\tan ^{-1}(\sqrt{3})=60$

similarly

$\sqrt{3} x – y =0, \text { slope }=-\sqrt{(} 3), \Rightarrow \beta=\tan ^{-1}(-\sqrt{3})=60$ $\Rightarrow \angle BOA =180-60-60=60$

For $\triangle OAB$ to be equilateral, Line $AB$ has to parallel to $x$-axis

Hence, the eq of line $AB$ that passes through $(2,2)$ and parallel to $x$-axis is

$y=2$

$y-2=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.