ત્રણ બિંદુ $P, Q, R$ આપેલ છે જ્યાં બિંદુ $P(5, 3)$ હોય અને બિંદુ $R$ એ $x-$ અક્ષ પર આવેલ છે જો રેખા $RQ$ નું સમીકરણ $x - 2y = 2$ અને રેખા $PQ$ એ $x-$ અક્ષ ને સમાંતર હોય તો $\Delta PQR$ ના મધ્યકેન્દ્રનું સમીકરણ મેળવો
$2x+y- 9 = 0$
$x - 2y+ 1 = 0$
$5x - 2y= 0$
$2x-5y = 0$
રેખા $\frac{x}{a} + \frac{y}{b} = 1$ એવી રીતે ફરે છે કે જેથી $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{2{c^2}}}$, જ્યાં $a, b, c \in R_0$ અને $c$ એ અચળ છે, હોય તો આપેલ રેખા પર ઊંગમબિંદુથી લંબપાદના બિંદુપથનું સમીકરણ મેળવો
રેખાઓ $y = mx,\,y = mx + 1,\,y = nx$ અને $y = nx + 1$ દ્વારા બનતા સમાંતર બાજુ ચતુષ્કોણનું ક્ષેત્રફળ મેળવો.
રેખા $2x + 3y = 12$ એ $x -$ અક્ષને બિંદુ $A$ અને $y -$ અક્ષને બિંદુ $B$ આગળ મળે છે રેખા બિંદુ $(5, 5)$ માંથી પસાર થતી અને $AB$ ને લંબ કે જે $x -$ અક્ષ,$y -$ અક્ષને $\&$ રેખા $AB$ ને અનુક્રમે બિંદુઓ $C, D, E$ માં મળે છે જો $O$ એ ઊંગમબિંદુ હોય તો $OCEB$ નું ક્ષેત્રફળ મેળવો
શિરોબિંદુુ $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ અને $\mathrm{C}(\gamma, \delta)$ તથા ખૂણાઓ $\angle A B C=\frac{\pi}{6}$ અને $\angle B A C=\frac{2 \pi}{3}$ વાળો એક ત્રિકોણ $\mathrm{ABC}$ ધ્યાને લો. જો બિંદુઆ $\mathrm{B}$ અને $\mathrm{C}$ રેખા $y=x+4$ પર આવેલા હોય, તો $\alpha^2+y^2=$ .........
$\frac{x}{a}\,\, + \,\,\frac{y}{b}\,\, = \,\,1$ એ ચલિત રેખા છે કે જેથી $\frac{1}{{{a^2}}}\, + \,\,\frac{1}{{{b^2}}}\,\, = \,\,\frac{1}{{{c^2}}}$ તો ઉગમબિંદુમાંથી રેખા પરના લંબપાદનું બિંદુપથ :