રેખાઓ $x + y - 4 = 0,\,$ $3x + y = 4,$ $x + 3y = 4$ થી બનતો ત્રિકોણ . . . . પ્રકારનો બને.
સમદ્વિભુજ
સમબાજુ
કોટકોણ
એકપણ નહી.
જો ત્રિકોણનું પરિકેન્દ્ર ઉંગમબિંદુ પર આવેલ હોય અને તેનું મધ્યકેન્દ્ર બિંદુ $(a^2 + 1 , a^2 + 1 )$ અને $(2a, - 2a)$ જોડતા રેખાખંડના મધ્યબિંદુ પર આવેલ હોય જ્યાં $a \ne 0$, તો કોઈ પણ $a$ ની કિમત માટે ત્રિકોણનું મધ્યકેન્દ્ર ક્યાં આવેલ હોય?
અંતર સૂત્રનો ઉપયોગ કર્યા વગર બતાવો કે $(- 2, -1), (4, 0), (3, 3)$ અને $(-3, 2)$ સમાંતરબાજુ ચતુષ્કોણનાં શિરોબિંદુઓ છે.
જો રેખાઓ $x-y+1=0$, $x-2 y+3=0$ અને $2 x-5 y+11=0$ નાં છેદબિંદુઓ ત્રિકોણ $A B C$ ની બાજુનાં મધ્યબિંદુઓ છે તો ત્રિકોણ $\mathrm{ABC}$ નું ક્ષેત્રફળ મેળવો.
સાબિત કરો કે રેખાઓ$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ અને $x=0$ વડે રચાતા ત્રિકોણનું ક્ષેત્રફળ $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ શોધો.