જો બહુપદી સમીકરણ $a_nx^n + a_{n-1}x^{n-1} + … + a_2x^2 + a_1x + a_0 = 0$ જ્યાં $n$ ધન પૂર્ણાક સંખ્યા, ના બે ભિન્ન બીજ $ \alpha$ અને $\beta $ હોય, તો $ \alpha $ અને $\beta$ વચ્ચે સમીકરણ $ na_nx^{n-1} + (n - 1)a_{n-1 }x^{n-2} + …. a_1 = 0 $ એ $ (\alpha , \beta )$ અંતરાલમાં કેટલા બીજ હોય ?
એક ચોક્કસ બીજ
વધુમાં વધુ એક બીજ
ઓછામાં ઓછું એક બીજ
બીજ ન હોય.
ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી
$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.
નીચેના બે વિધાનો ધ્યાને લો.
$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$
$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
જો $2a + 3b + 6c = 0$, $a, b, c \in R$ હોય, તો સમીકરણ .......નું ઓછામાં ઓછું એક $0$ બીજ અને $1$ વચ્ચે છે.
$\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ ની કિમંત મેળવો . (કે જ્યાં [.] એ મહતમ પૃણાંક વિધેય છે.)
મધ્યક પ્રમેય મુજબ, $f(b) - f(a) = (b - a)f'(c)$ જો $a = 4$, $b = 9$ અને $f(x) = \sqrt x $ તો $c$ ની કિમત મેળવો.