જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$
It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.
Since every differentiable function is a continuous function, we obtain
a) $f$ is continuous on $[-5,5].$
b) $f$ is continuous on $(-5,5).$
Therefore, by the Mean Value Theorem, there exists $c \in(-5,5)$ such that
$f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}$
$\Rightarrow 10 f^{\prime}(c)=f(5)-f(-5)$
It is also given that $f^{\prime}(x)$ does not vanish anywhere.
$\therefore f^{\prime}(c) \neq 0$
$\Rightarrow 10 f^{\prime}(c) \neq 0$
$\Rightarrow f(5)-f(-5) \neq 0$
$\Rightarrow f(5) \neq f(-5)$
Hence, proved.
મધ્યકમાન પ્રમેયમાં $f(b) - f(a) = (b - a)f'(c)$ આપેલ છે. જો $a = 4 , b = 9$ અને $f(x) = \sqrt x $ તો $ c$ ની કિમંત મેળવો.
વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.
વિધેય $f(x) = {e^x},a = 0,b = 1$, તો મધ્યકમાન પ્રમેય મુજબ $c$ ની કિમત મેળવો.
વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ $[1, 3]$ માં રોલ ના પ્રમેયનું પાલન કરે છે તો $a$ અને $b$ મેળવો.
વિધેય $x + {1 \over x},x \in [1,\,3]$, તો મધ્યકમાન પ્રમેયપરથી $c$ ની કિમંત મેળવો.