કઈ વાસ્તવિક સંખ્યા $K$ માટે સમીકરણ $2x^3 + 3x + k = 0$ ના બે વાસ્તવિક બીજ $ [0, 1]$ અંતરાલમાં હોય ?
$1$ અને $ 2$ વચ્ચે હોય
$2$ અને $3$ વચ્ચે હોય
$-1$ અને $ 0 $ વચ્ચે હોય
અસ્તિત્વ ધરાવે નહિ.
જો $27a + 9b + 3c + d = 0$ હોય, તો સમીકરણ $ 4ax^3 + 3bx^2 + 2cx + d = 0 $ નું ઓછામાં ઓછું એક બીજ કોની વચ્ચે હોય ?
જો $f:[-5,5] \rightarrow \mathrm{R}$ વિકલનીય વિધેય હોય અને $f^{\prime}(x)$ ક્યાંય શૂન્ય ના બને તો સાબિત કરો કે $f(-5) \neq f(5).$
જો અંતરાલ $[3,4]$ માં બિંદુ $c$ આગળ વિધેય $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}^{2}+\alpha}{7 \mathrm{x}}\right)$ કે જ્યાં $\alpha \in \mathrm{R},$ એ રોલના પ્રમેયનું પાલન કરતું હોય તો $f^{\prime \prime}(\mathrm{c})$ મેળવો.
વિધેય $x + {1 \over x},x \in [1,\,3]$, તો મધ્યકમાન પ્રમેયપરથી $c$ ની કિમંત મેળવો.
$a = 1$ અને $b = 4$ લઈ વિધેય $f(x)=x^{2}-4 x-3$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો.