જો $2a + 3b + 6c = 0 $ હોય, તો સમીકરણ $ax^2 + bx + c = 0$ નું ઓછામાં ઓછું એક બીજ કયા અંતરાલમાં હોય ?
$(0, 1)$
$(1, 2)$
$(2, 3)$
એકપણ નહિ.
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ રોલનું પ્રમેય નું પાલન કરતુ હોય તો
વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.
જો $f(x) = (x-4)(x-5)(x-6)(x-7)$ તો
જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$ નું ધન બીજ કેવું હોય ?
જો $f $ અને $g$ એ $ [0,1] $ પર વિકલનીય વિધેયો હોય તથા $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ અને $f\left( 1 \right) = 6,$તો કોઇ $c \in \left] {0,1} \right[$ માટે