English
Hindi
5. Continuity and Differentiation
normal

જો $ f(x)  $ એ $ [2, 5]$ અંતરાલમાં વિકલનીય હોય કે જ્યાં $ f(2) = 1/5 $ અને $ f(5) = 1/2$ થાય, તો અસ્તિત્વ ધરાવતી સંખ્યા $c, 2 < c < 5 $ કે જો માટે $ f'(c) = ……$

A

$1/2$

B

$1/5$

C

$1/10$

D

એકપણ નહિ

Solution

${f}(2)\,\, = \,\,\frac{1}{5}\,\,\,\,\,\,\,\,f(5)\,\, = \,\,\frac{1}{2}$

$L.M.V.T.\,\,$ દ્વારા ${f}{\text{(x)}}\,\,$ એ $\,{\text{x}}\, \in \,\,(2,\,\,5)$ પર વિકલનીય છે. 

${\mathbf{f'}}{\text{(c)}}\,\, = \,\,\,\frac{{{f}{\text{(b)}}\,\,{\text{ – }}\,\,{f}{\text{(a)}}}}{{{\text{(b}}\,\,{\text{ – }}\,\,{\text{a)}}}}\,\,\,\, = \,\,\frac{{{f}(5)\,\, – \,\,{f}(2)}}{{(5\,\, – \,\,2)}}\,\,\, = \,\,\left( {\frac{1}{2}\,\, – \,\,\frac{1}{5}} \right)\,\, \times \,\,\frac{1}{3}$

$\frac{3}{{10}}\,\, \times \,\,\frac{1}{3}\,\, = \,\,\frac{1}{{10}}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.