જો $ f(x)  $ એ $ [2, 5]$ અંતરાલમાં વિકલનીય હોય કે જ્યાં $ f(2) = 1/5 $ અને $ f(5) = 1/2$ થાય, તો અસ્તિત્વ ધરાવતી સંખ્યા $c, 2 < c < 5 $ કે જો માટે $ f'(c) = ……$

  • A

    $1/2$

  • B

    $1/5$

  • C

    $1/10$

  • D

    એકપણ નહિ

Similar Questions

જો વિધેયો $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ અને $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ ને સામાન્ય યરમ બિંદુ $(extreme\,point)$ હોય, તો $a+2 b+7=...........$

  • [JEE MAIN 2023]

અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો  $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો  . .. .  .

  • [JEE MAIN 2021]

ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ  : $f(x)=x^{2}-1,$ $x \in[1,2]$

વિધેય $f(x) = |x|$ એ અંતરાલ $[-1, 1]$ માં રોલ ના પ્રમેયનું પાલન કરતું નથી કારણ કે . . . .

જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$  નું ધન બીજ કેવું હોય ?