$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $

  • [JEE MAIN 2017]
  • A

    ${2^{20}} - {2^{10}}$

  • B

    ${2^{21}} - {2^{11}}$

  • C

    ${2^{21}} - {2^{10}}$

  • D

    ${2^{20}} - {2^9}$

Similar Questions

જો $(1 - 2x + 5x^2 - 10x^3) (1 + x)^n = 1 + a_1x + a_2x^2 + ....$ આપેલ હોય અને $a_1^2\,= 2a_2$ હોય તો $n$ ની કિમત મેળવો 

જો ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , હોય તો ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ ની કિમત મેળવો 

${(1 + x + {x^2})^n}$ ના સહગુણકનો સરવાળો મેળવો.

ધારો કે  $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ અને  $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. છે. જો  $5 \alpha=6 \beta$, હોય તો  $n$=...........................

  • [JEE MAIN 2024]

જો $(1 + x)(1 + x + x^2)(1 + x + x^2 + x^3)\,\, ......\,\,$$(1 + x + x^2 + ..... + x^{30}) = $$a_0 + a_1x + a_2x^2$ .....$+$ $a_{465}x^{465}$, હોય તો $a_0 + a_2 + a_4 + ......... +$ ની કિમત મેળવો