$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right)$ का मान है:

  • [JEE MAIN 2017]
  • A

    ${2^{20}} - {2^{10}}$

  • B

    ${2^{21}} - {2^{11}}$

  • C

    ${2^{21}} - {2^{10}}$

  • D

    ${2^{20}} - {2^9}$

Similar Questions

यदि ${(\alpha {x^2} - 2x + 1)^{35}}$ के प्रसार में गुणांकों का योग ${(x - \alpha y)^{35}}$ के प्रसार में गुणांकों के योग के बराबर हो, तब $\alpha $=

${(1 + x)^{15}}$ के प्रसार में अन्तिम आठ पदों के गुणांकों का योगफल है

यदि ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ और ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, तो $\frac{{{t_n}}}{{{S_n}}}$=

  • [AIEEE 2004]

${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=

माना $n$ एक विषम पूर्णांक है। यदि $\theta $ के सभी मानों के लिये $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ हो, तो