किसी नगर में $25\% $ परिवार के पास टेलीफोन एवं $15\%$ के पास कार है तथा $65\%$ परिवार के पास न तो टेलीफोन और न ही कार है। यदि $2000 $ परिवार कार और टेलीफोन दोनों रखते हैं, तब
$1.$ $10\%$ परिवार के पास कार और टेलीफोन दोनों हैं
$2. $ $35\%$ परिवार के पास या तो कार है या टेलीफोन है
$3.$ $ 40,000 $ परिवार नगर में रहते है।इनमें से कौनसा कथन सत्य है
$1 $ तथा $2$
$1$ तथा $3$
$2$ तथा $ 3$
$1, 2$ तथा $3$
एक शहर में दो समाचार पत्र $A$ तथा $B$ प्रकाशित होते हैं। यह ज्ञात है कि शहर की $25 \%$ जनसंख्या $A$ पढ़ती है तथा $20 \% B$ पढ़ती है। जब कि $8 \% A$ तथा $B$ दोनों को पढ़ती है। इसके अतिरिक्त, $A$ पढ़ने तथा $B$ न पढ़ने वालों में $30 \%$ विज्ञापन देखते हैं और $B$ पढ़ने तथा $A$ न पढ़ने वालों में भी $40 \%$ विज्ञापन देखते हैं, जब कि $A$ तथा $B$ दोनों को पढ़ने वालों में से $50 \%$ विज्ञापन देखते है। तो जनसंख्या में विज्ञाप न देखने वालों का प्रतिशत हैं
एक सर्वेक्षण यह दिखाता है किस एक कार्यालय में कार्यरत $73 \%$ व्यक्ति कॉफी पसन्द करते हैं, जबकि $65 \%$ चाय पसन्द करते हैं। यदि $x$ उस प्रतिशत को दर्शाता है, जो कॉफी और चाय दोनों को पसन्द करते हैं, तो $x$ नहीं हो सकता
$60$ लोगों के सर्वेक्षण में पाया गया कि $25$ लोग समाचार पत्र $H , 26$ लोग समाचार पत्र $T, 26$ लोग $T$ तथा $I$ दोनों और $3$ लोग तीनों ही समाचार पत्र पढ़ने हैं, तो निम्नलिखित ज्ञात कीजिए :
कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
एक कक्षा में $100$ छात्र हैं, $15$ छात्रों ने केवल भौतिकी (लेकिन गणित और रसायन विज्ञान नहीं) को चुना, $3$ छात्रों ने केवल रसायन विज्ञान (लेकिन गणित और भौतिकी नहीं) को चुना, और $45$ छात्रों ने केवल गणित (लेकिन भौतिकी और रसायन विज्ञान नहीं) को चुना। शेष छात्रों में, पाया गया है कि $23$ छात्रों ने भौतिकी और रसायन विज्ञान को चुना है, $20$ छात्रों ने भौतिकी और गणित को चुना है, और $12$ छात्रों ने गणित और रसायन विज्ञान को चुना है। उन छात्रों की संख्या जिन्होंने तीनों विषयों को चुना है, हैं।
किसी महाविद्यालय के $300$ छात्रों में से प्रत्येक छात्र $5$ समाचार पत्र पढ़ते हैं तथा प्रत्येक समाचार पत्र $60$ छात्रों द्वारा पढ़ा जाता है, तब समाचार पत्रों की संख्या होगी