- Home
- Standard 11
- Mathematics
$200$ व्यक्ति किसी चर्म रोग से पीड़ित हैं, इनमें $120$ व्यक्ति रसायन $C _{1}, 50$ व्यक्ति रसायन $C _{2}$, और $30$ व्यक्ति रसायन $C _{1}$ और $C _{2}$ दोनों ही से प्रभावित हुए हैं, तो ऐसे व्यक्तियों की संख्या ज्ञात कीजिए जो प्रभावित हुए हों
रसायन $C _{2}$ किंतु रसायन $C _{1}$ से नहीं,
$20$
$20$
$20$
$20$
Solution

Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
From the Fig we have
$B=(B-A) \cup(A \cap B)$
and so, $\quad n( B )=n( B – A )+n( A \cap B )$
( Since $B – A$ and $A \cap B$ are disjoint .)
or $n(B – A) = n(B) – n(A \cap B)$
$ = 50 – 30 = 20$
Thus, the number of individuals exposed to chemical $C_{2}$ and not to chemical $C_{1}$ is $20 .$