एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी
$12$
$8$
$16$
इनमें से कोई नहीं
एक शहर में दो समाचार पत्र $A$ तथा $B$ प्रकाशित होते हैं। यह ज्ञात है कि शहर की $25 \%$ जनसंख्या $A$ पढ़ती है तथा $20 \% B$ पढ़ती है। जब कि $8 \% A$ तथा $B$ दोनों को पढ़ती है। इसके अतिरिक्त, $A$ पढ़ने तथा $B$ न पढ़ने वालों में $30 \%$ विज्ञापन देखते हैं और $B$ पढ़ने तथा $A$ न पढ़ने वालों में भी $40 \%$ विज्ञापन देखते हैं, जब कि $A$ तथा $B$ दोनों को पढ़ने वालों में से $50 \%$ विज्ञापन देखते है। तो जनसंख्या में विज्ञाप न देखने वालों का प्रतिशत हैं
एक नगर में $10,000$ परिवारों में यह पाया गया कि $40\%$ परिवार अखबार $A$ खरीदते हैं, $20\%$ अखबार $B$ खरीदते हैं और $10\%$ परिवार अखबार $C$ खरीदते हैं, $5%$ परिवार $A$ और $B$, $3\%$ परिवार $B$ और $C$ और $4\%$ परिवार $A$ और $C$ खरीदते हैं। यदि $2\%$ परिवार तीनों अखबार खरीदते हैं, तो केवल $A$ खरीदने वाले परिवारों की संख्या कितनी है?
किसी विद्यालय के $600$ विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि $150$ विद्यार्थी चाय, $225$ विद्यार्थी कॉफी तथा $100$ विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।
$140$ विद्यार्थियों, जिनके क्रमांक $1$ से $140$ हैं, की एक कक्षा में सभी सम क्रमांक के विद्यार्थियों ने गणित विषय चुना है, उन्होंने जिनके क्रमांग $3$ से विभाजित होते हैं भौतिक शास्त्र विषय चुना है तथा उन्होंने जिनके क्रमांक $5$ से विभाजित होते हैं, रसायन शास्त्र विषय चुना है। तो उन विद्यार्थियों की संख्या, जिन्होंने इन तीन में से कोई भी विषम नहीं चुना है
किसी नगर में $25\% $ परिवार के पास टेलीफोन एवं $15\%$ के पास कार है तथा $65\%$ परिवार के पास न तो टेलीफोन और न ही कार है। यदि $2000 $ परिवार कार और टेलीफोन दोनों रखते हैं, तब
$1.$ $10\%$ परिवार के पास कार और टेलीफोन दोनों हैं
$2. $ $35\%$ परिवार के पास या तो कार है या टेलीफोन है
$3.$ $ 40,000 $ परिवार नगर में रहते है।इनमें से कौनसा कथन सत्य है