गणित की एक परीक्षा में लड़कों का औसत प्राप्तांक $x \%$ है तथा लड़कियों का औसत प्रापांक $y \%$ है जहाँ $x \neq y$ | यदि सभी विद्यार्थियों का औसत प्राम्नांक ${ }^2 \%$ है, तब लड़कियों की संख्या तथा कुल विद्यार्थियों की संख्या का अनुपात है
$\frac{z-x}{y-x}$
$\frac{z-y}{y-x}$
$\frac{z+y}{y-x}$
$\frac{z+x}{y-x}$
एक सर्वेक्षण यह दिखाता है किस एक कार्यालय में कार्यरत $73 \%$ व्यक्ति कॉफी पसन्द करते हैं, जबकि $65 \%$ चाय पसन्द करते हैं। यदि $x$ उस प्रतिशत को दर्शाता है, जो कॉफी और चाय दोनों को पसन्द करते हैं, तो $x$ नहीं हो सकता
एक स्कूल की तीन एथलेटिक टीमों में $21$ छात्र क्रिकेट टीम में हैं, $26$ हॉकी टीम में हैं और $29$ फुटबॉल टीम में हैं। उनमें से $14$ हॉकी और क्रिकेट खेलते हैं, $15$ हॉकी और फुटबॉल खेलते हैं, और $12$ फुटबॉल और क्रिकेट खेलते हैं। आठ छात्र तीनों खेल खेलते हैं। तो इन तीनों एथलेटिक टीमों में कुल कितने अलग-अलग सदस्य हैं?
एक युद्ध में $70\%$ सिपाहियों ने एक आँख गॅवाई , $80\%$ ने एक कान, $75\% $ ने एक भुजा, $85\% $ ने एक पैर तथा $x\%$ ने चारों अंग गंवा दिए, तो $ x $ का निम्नतम मान क्या होगा
एक नगर में $10,000$ परिवारों में यह पाया गया कि $40\%$ परिवार अखबार $A$ खरीदते हैं, $20\%$ अखबार $B$ खरीदते हैं और $10\%$ परिवार अखबार $C$ खरीदते हैं, $5%$ परिवार $A$ और $B$, $3\%$ परिवार $B$ और $C$ और $4\%$ परिवार $A$ और $C$ खरीदते हैं। यदि $2\%$ परिवार तीनों अखबार खरीदते हैं, तो केवल $A$ खरीदने वाले परिवारों की संख्या कितनी है?
मान लीजिए कि $X =\{$ राम, गीता, अकबर $\}$ कक्षा $XI$ के विद्यार्थियों का जो विद्यालय की हाकी टीम में हैं, एक समुच्चय है। मान लीजिए कि $Y =\{$ गीता, डेविड, अशोक $\}$ कक्षा $XI$ के विद्यार्थियों का, जो विद्यालय की फुटबाल टीम में हैं, एक समुच्चय है। $X \cup Y$ ज्ञात कीजिए और इस समुच्चय की व्याख्या कीजिए।