एक महाविद्यालय में फुटबाल के लिए $38,$ बास्केट बाल के लिए $15$ और क्रिकेट के लिए $20$ पदक प्रदान किए गए। यदि ये पदक कुल $58$ लोगों को मिले और केवल तीन लोगों को तीनों खेलों के लिए मिले, तो कितने लोगों को तीन में से ठीक-ठीक दो खेलों के लिए मिले ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.

Then $n( F )=38, n( B )=15, n( C )=20$

$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$

Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$

$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$

$n( F \cap B \cap C )$

gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$

Consider the Venn diagram as given in Fig 

Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.

Thus, $d=n( F \cap B \cap C )=3$ and  $a+d+b+d+c+d=18$

Therefore $a+b+c=9,$

which is the number of people who got medals in exactly two of the three sports.

865-s239

Similar Questions

$40$ छात्रों का एक समूह $3$ विषयों गणित, भौतिक विज्ञान तथा रसायन विज्ञान की परीक्षा में बैठा। यह पाया गया कि सभी छात्र कम से कम विषय में उत्तीर्ण हुए, $20$ छात्र गणित में उत्तीर्ण हुए, $25$ छात्र भौतिक विज्ञान में उत्तीर्ण हुए, $16$ छात्र रसायन विज्ञान में उत्तीर्ण हुए, अधिक से अधिक $11$ छात्र गणित तथा भौतिक विज्ञान दोनो में उत्तीर्ण हुए। अधिक से अधिक $15$ छात्र भौतिक विज्ञान तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए, अधिक से अधिक $15$ छात्र गणित तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए। तो तीनों विषयों में उत्तीर्ण होंने वाले छात्रों की अधिकतम संख्या है ............

  • [JEE MAIN 2024]

$400$ व्यक्तियों के समूह में, $250$ हिंदी तथा $200$ अंग्रेज़ी बोल सकते हैं। कितने व्यक्ति हिंदी तथा अंग्रेज़ी दोनों बोल सकते हैं ?

एक सर्वेक्षण में पाया गया कि $21$ लोग उत्पाद $A , 26$ लोग उत्पाद $B , 29$ लोग उत्पाद $C$ पसंद करते हैं। यदि $14$ लोग उत्पाद $A$ तथा $B , 12$ लोग उत्पाद् $C$ तथा $A , 14$ लोग उत्पाद $B$ तथा $C$ और $8$ लोग तीनो ही उत्पादों को पसंद करते हैं। ज्ञात कीजिए कि कितने लोग केवल उत्पाद $C$ को पसंद् करते हैं।

एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी

किसी शहर में, $25 \%$ परिवारों के पास फोन है तथा $15 \%$ के पास कार है ; $65 \%$ परिवारों के पास नो फोन है और न ही कार है, तथा $2,000$ परिवारों के पास फोन तथा कार दोनों हैं। निम्न तीन कथनों पर विचार कीजिए

$(a)$ $5 \%$ परिवारों के पास कार तथा फोन दोनों हैं।

$(b)$ $35 \%$ परिवारों के पास या तो कार है या फोन है।

$(c)$ शहर में $40,000$ परिवार रहते हैं। तो,

  • [JEE MAIN 2015]