एक महाविद्यालय में फुटबाल के लिए $38,$ बास्केट बाल के लिए $15$ और क्रिकेट के लिए $20$ पदक प्रदान किए गए। यदि ये पदक कुल $58$ लोगों को मिले और केवल तीन लोगों को तीनों खेलों के लिए मिले, तो कितने लोगों को तीन में से ठीक-ठीक दो खेलों के लिए मिले ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.

Then $n( F )=38, n( B )=15, n( C )=20$

$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$

Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$

$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$

$n( F \cap B \cap C )$

gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$

Consider the Venn diagram as given in Fig 

Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.

Thus, $d=n( F \cap B \cap C )=3$ and  $a+d+b+d+c+d=18$

Therefore $a+b+c=9,$

which is the number of people who got medals in exactly two of the three sports.

865-s239

Similar Questions

एक सर्वेक्षण से पता चलता है कि शहर के $63 \%$ व्यक्ति अखबार $A$ पढ़ते है जबकि $76 \%$ व्यक्ति अखबार $B$ पढ़ते है। यदि $x \%$ व्यक्ति दोनों अखबार पढ़ते है, तो $x$ का संभव मान हो सकता है

  • [JEE MAIN 2020]

एक कक्षा में $100$ छात्र हैं, $15$ छात्रों ने केवल भौतिकी (लेकिन गणित और रसायन विज्ञान नहीं) को चुना, $3$ छात्रों ने केवल रसायन विज्ञान (लेकिन गणित और भौतिकी नहीं) को चुना, और $45$ छात्रों ने केवल गणित (लेकिन भौतिकी और रसायन विज्ञान नहीं) को चुना। शेष छात्रों में, पाया गया है कि $23$ छात्रों ने भौतिकी और रसायन विज्ञान को चुना है, $20$ छात्रों ने भौतिकी और गणित को चुना है, और $12$ छात्रों ने गणित और रसायन विज्ञान को चुना है। उन छात्रों की संख्या जिन्होंने तीनों विषयों को चुना है, हैं।

  • [KVPY 2021]

किसी कक्षा के $ 55 $ छात्रों में से, $23$  छात्र गणित, $24$ भौतिकी, $19 $ रसायन, $12$  गणित और भौतिकी, $ 9 $ गणित और रसायन,$7 $ भौतिकी और रसायन तथा $4$ सभी विषय पढ़ते हैं, तो केवल एक विषय पढ़ने वाले छात्रों की संख्या क्या होगी

एक कक्षा में यदि लड़कों की संख्या का पाँचवां हिस्सा निकल जाए तब बचे हुए लड़कों और लड़कियों की संख्या का अनुपात $2: 3$ है | यदि और $44$ लड़कियाँ कक्षा छोड़ देती हैं, तो लड़कों एवं लड़कियों का अनुपात $5 : 2$ हों जाता है । तब कितने और लड़कों के कक्षा से निकलने पर कक्षा में लड़कों और लड़कियों की संख्या बराबर हो जाएगी ?

  • [KVPY 2017]

$60$ लोगों के सर्वेक्षण में पाया गया कि $25$ लोग समाचार पत्र $H , 26$ लोग समाचार पत्र $T, 26$ लोग समाचार पत्र $I, 9$ लोग $H$ तथा $I$ दोनों, $11$ लोग $H$ तथा $T$ दोनों $8$ लोग $T$ तथा $I$ दोनों और $3$ लोग तीनों ही समाचार पत्र पढते हैं, तो निम्नलिखित ज्ञात कीजिए

ठीक-ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।