एक महाविद्यालय में फुटबाल के लिए $38,$ बास्केट बाल के लिए $15$ और क्रिकेट के लिए $20$ पदक प्रदान किए गए। यदि ये पदक कुल $58$ लोगों को मिले और केवल तीन लोगों को तीनों खेलों के लिए मिले, तो कितने लोगों को तीन में से ठीक-ठीक दो खेलों के लिए मिले ?
Let $F, B$ and $C$ denote the set of men who received medals in football, basketball and cricket. respectively.
Then $n( F )=38, n( B )=15, n( C )=20$
$n( F \cup B \cup C )=58$ and $n( F \cap B \cap C )=3$
Therefore, $\quad n( F \cup B \cup C )=n( F )+n( B )$
$+n( C )-n( F \cap B )-n( F \cap C )-n( B \cap C )+$
$n( F \cap B \cap C )$
gives $n( F \cap B )+n( F \cap C )+n( B \cap C )=18$
Consider the Venn diagram as given in Fig
Here, $a$ denotes the number of men who got medals in football and basketball only, $b$ denotes the number of men who got medals in football and cricket only, $c$ denotes the number of men who got medals in basket ball and cricket only and $d$ denotes the number of men who got medal in all the three.
Thus, $d=n( F \cap B \cap C )=3$ and $a+d+b+d+c+d=18$
Therefore $a+b+c=9,$
which is the number of people who got medals in exactly two of the three sports.
गणित की एक परीक्षा में लड़कों का औसत प्राप्तांक $x \%$ है तथा लड़कियों का औसत प्रापांक $y \%$ है जहाँ $x \neq y$ | यदि सभी विद्यार्थियों का औसत प्राम्नांक ${ }^2 \%$ है, तब लड़कियों की संख्या तथा कुल विद्यार्थियों की संख्या का अनुपात है
एक युद्ध में $70\%$ सिपाहियों ने एक आँख गॅवाई , $80\%$ ने एक कान, $75\% $ ने एक भुजा, $85\% $ ने एक पैर तथा $x\%$ ने चारों अंग गंवा दिए, तो $ x $ का निम्नतम मान क्या होगा
किसी शहर में, $25 \%$ परिवारों के पास फोन है तथा $15 \%$ के पास कार है ; $65 \%$ परिवारों के पास नो फोन है और न ही कार है, तथा $2,000$ परिवारों के पास फोन तथा कार दोनों हैं। निम्न तीन कथनों पर विचार कीजिए
$(a)$ $5 \%$ परिवारों के पास कार तथा फोन दोनों हैं।
$(b)$ $35 \%$ परिवारों के पास या तो कार है या फोन है।
$(c)$ शहर में $40,000$ परिवार रहते हैं। तो,
मान लीजिए कि किसी समतल में स्थित सभी त्रिभुजों का समुच्चय सार्वत्रिक समुच्चय $U$ है। यदि $A$ उन सभी त्रिभुजों का समुच्चय है जिनमें कम से कम एक कोण $60^{\circ}$ से भिन्न है, तो $A ^{\prime}$ क्या है ?
एक कक्षा में यदि लड़कों की संख्या का पाँचवां हिस्सा निकल जाए तब बचे हुए लड़कों और लड़कियों की संख्या का अनुपात $2: 3$ है | यदि और $44$ लड़कियाँ कक्षा छोड़ देती हैं, तो लड़कों एवं लड़कियों का अनुपात $5 : 2$ हों जाता है । तब कितने और लड़कों के कक्षा से निकलने पर कक्षा में लड़कों और लड़कियों की संख्या बराबर हो जाएगी ?