माना $R$ किसी परिमित समुच्चय $A$ जिसमें $ n$ अवयव है, पर तुल्यता संबंध है तब $R$ में क्रमित युग्मों की संख्या है
$n $ से कम
$n$ के बराबर या अधिक
$n$ से बराबर या कम
इनमें से कोई नहीं
माना किसी तल में स्थित सभी सरल रेखा का समुच्चय $L$ है तथा संबंध $R, L $ पर $\alpha R\beta \Leftrightarrow \alpha \bot \beta ,\,\alpha ,\,\beta \in L$ के द्वारा परिभाषित है, तब $R$ है
संबंध $R $ समुच्चय $\{2, 3, 4, 5\}$ से $ \{3, 6, 7, 10\}$ में; $xRy$ द्वारा परिभाषित है $ \Leftrightarrow x$ सापेक्षिक अभाज्य है, $y $ के, तब $R$ का प्रान्त $(Domain)$ है
यदि $R \subset A \times B$ तथा $S \subset B \times C\,$ है, तो संबंध ${(SoR)^{ - 1}} = $
माना $ A = \{1, 2, 3, 4\} $ तथा $R, A $ में संबंध है, जबकि दिया है $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$ तब $R$ है
किसी समष्टीय समुच्चय के संदर्भ में, जिसमें एक उपसमुच्चय निहित है, के अंतर्गत एक संबंध होगा