यदि $ R$ समुच्चय $A$ से $ B $ में संबंध है तथा $S$ समुच्च्य $B$ से $C $ में संबंध है, तब संबंध $ SoR $ है
$A$ से $C$ में
$C$ से $A $ में
अस्तित्वहीन
इनमें से कोई नहीं
यह स्पष्ट है।
माना $\mathrm{A}=\{1,2,3, \ldots \ldots \ldots 100\}$ है। माना $\mathrm{A}$ पर, $(x, y) \in R$ यदि और केवल यदि $2 x=3 y$ है, द्वारा परिभाषित एक संबंध $\mathrm{R}$ है। माना $\mathrm{A}$ पर एकसममित संबंध $\mathrm{R}_1$ है, जिससे लिए $\mathrm{R} \subset \mathrm{R}_1$ है तथा $\mathrm{R}_1$ में अवयवों की संख्या $\mathrm{n}$ है। तो $\mathrm{n}$ का न्यूनतम मान है ………….
$n \times n$ के वास्तविक आव्यूहों $A$ तथा $B$ के एक समूह पर एक संबंध $R$ निम्न प्रकार से परिभाषित है :
"$ARB$ यदि और केवल यदि एक व्युत्क्रमणीय आव्यूह $P$ का अस्तित्व है। जिसके लिए $PAP -1= B$ है'। तो निम्न में से कौन-सा सत्य है ?
यदि $A = \{1, 2, 3\}, B = \{1, 4, 6, 9\} $ तथा $R, A $ से $B$ में संबंध है जो $“x $ बड़ा है $y $ से” से परिभाषित है तब $ R$ की रेंज है
मान $P$ सभी वास्तविक संख्याओं पर परिभाषित एक ऐसा संबंध है कि $P =\left\{( a , b ): \sec ^{2} a -\tan ^{2} b =1\right\}$ है, तो $P$
समुच्चय $ A $ पर रिक्त संबंध है
Confusing about what to choose? Our team will schedule a demo shortly.