समुच्चय $ A $ पर रिक्त संबंध है
स्वतुल्य
सममित तथा संक्रमक
स्वतुल्य तथा संक्रमक
स्वतुल्य तथा संक्रमक
माना $A=\{1,2,3,4, \ldots . .10\}$ और $B=\{0,1,2,3,4\}$ हैं। संबंध $\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: 2(\mathrm{a}-\mathrm{b})^2+\right.$ $3(\mathrm{a}-\mathrm{b}) \in \mathrm{B}\}$ में अवयवों की संख्या है______________
$n \times n$ के वास्तविक आव्यूहों $A$ तथा $B$ के एक समूह पर एक संबंध $R$ निम्न प्रकार से परिभाषित है :
"$ARB$ यदि और केवल यदि एक व्युत्क्रमणीय आव्यूह $P$ का अस्तित्व है। जिसके लिए $PAP -1= B$ है'। तो निम्न में से कौन-सा सत्य है ?
माना $A$ किसी परिवार के बच्चों का अरिक्त समुचय है, संबंध $x, y $ का भाई है' $A$ पर है
माना $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ है तथा $\mathrm{A}$ पर एक संबंध $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: \mathrm{b}=|\mathrm{a}|$ या $\left.b^2=a+1\right\}$ है। तो संबंध $R$ में कम से कम कितने अवयव जोड़े जाएं, जिससे कि यह स्वतुल्य तथा सममित हो जाए ?_______________.
माना $R$ तथा $ S $ समुच्चय $ A $ पर दो संबंध है, तब