1.Relation and Function
easy

मान लीजिए कि $X =\{1,2,3,4,5,6,7,8,9\}$ है। मान लीजिए कि $X$ में $R _{1}=\left\{(x, y): x-y\right.$ संख्या $3$ से भाज्य है $\}$ द्वारा प्रदत्त एक संबंध $R _{1}$ है तथा $R _{2}=\{(x, y):\{x, y\}$ $\subset\{1,4,7\}$ या $\{x, y\} \subset\{2,5,8\}$ या $\left\{(x, y\} \subset\{3,6,9\}\right.$ द्वारा प्रदत्त $X$ में एक अन्य संबंध $R _{2}$ है। सिद्ध कीजिए कि $R _{1}= R _{2}$ है।

Option A
Option B
Option C
Option D

Solution

Note that the characteristic of sets $\{1,4,7\}$, $\{2,5,8\} $ and $\{3,6,9\}$ is that difference between any two elements of these sets is a multiple of $3 .$ Therefore, $(x, y) \in R _{1} \Rightarrow x-y$ is a multiple of $3 \Rightarrow\{x, y\} \subset\{1,4,7\}$ or $\{x, y\} $ $\subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\} \Rightarrow(x, y) $ $\in R ,$ Hence, $R _{1} \subset R _{2} .$ Similarly, $\{x, y\} \in $ $R _{2} \Rightarrow\{x, y\}$ $\subseteq\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\} $ $\Rightarrow x-y$ is divisible by $3 \Rightarrow\{x, y\} \in R _{1} .$ This shows that $R _{2} \subset R _{1} .$ Hence, $R _{1}= R _{2}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.