यदि ${\log _e}\left( {\frac{{a + b}}{2}} \right) = \frac{1}{2}({\log _e}a + {\log _e}b)$ हो, तो $a $ और $b$ के मध्य सम्बंध होगा
$a = b$
$a = \frac{b}{2}$
$2a = b$
$a = \frac{b}{3}$
मान लें कि $n$ सबसे छोटा धन पूर्णांक इस प्रकार है कि $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 4$ निम्नांकित में कौन सा कथन सही है ?
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा
यदि $3^x=4^{x-1}$, तब $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
यदि ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ हो, तो $ x$ किस अन्तराल में है
यदि $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ हो, तब