यदि ${\log _{10}}x = y$हो, तब ${\log _{1000}}{x^2}$ का मान होगा
${y^2}$
$2y$
$\frac{{3y}}{2}$
$\frac{{2y}}{3}$
मान लें कि $n$ सबसे छोटा धन पूर्णांक इस प्रकार है कि $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 4$ निम्नांकित में कौन सा कथन सही है ?
यदि ${\log _7}2 = m,$ हो, तब ${\log _{49}}28$ बराबर होगा
यदि $x = {\log _3}5,\,\,\,y = {\log _{17}}25$ हो, तो निम्न में से कौन सा सही है
यदि ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ हो, तब $x$ का मान होगा
यदि $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab)$हो, तो निम्न में से किसका मान $ 1 $ होगा