आरोही क्रम में, दी गई संख्या $\alpha $ के लिये सही क्रम कौन सा है
${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $
${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $
${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $
${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $
यदि $\frac{1}{2} \le {\log _{0.1}}x \le 2$हो तब .......
प्राचल $ k $ के वास्तविक मानों की संख्या क्या होगी, जिसके लिए ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ का केवल एक हल हो, जबकि गुणांक वास्तविक हो
माना तीन भिन्न धनात्मक वास्तविक संख्याओं $a, b, c$ के लिए $(2 a)^{\log _e a}=(b c)^{\log _e b}$ तथा $b^{\log _e 2}=a^{\log _e c}$ हैं। तो $6 \mathrm{a}+5 \mathrm{bc}$ बराबर है____________.
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$
योगफल $\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ बराबर है: