माना तीन भिन्न धनात्मक वास्तविक संख्याओं $a, b, c$ के लिए $(2 a)^{\log _e a}=(b c)^{\log _e b}$ तथा $b^{\log _e 2}=a^{\log _e c}$ हैं। तो $6 \mathrm{a}+5 \mathrm{bc}$ बराबर है____________.
$6$
$4$
$3$
$8$
यदि ${x^{\frac{3}{4}{{({{\log }_3}x)}^2} + {{\log }_3}x - \frac{5}{4}}} = \sqrt 3 $ हो, तब $x$ है
पद $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}}} \ldots}}\right)$ का मान है।
यदि ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$हो तब ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$का मान है
यदि ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ तो ${3^{12}} \times {2^8}$ में अंको की संख्या है
$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \text { to } \infty\right)}$ का मान ............. है ।