If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then
${x^2} + {y^2} + 2y = 1$
${x^2} + {y^2} - 2y = 0$
${x^2} + {y^2} + 2y = - 1$
${x^2} + {y^2} - 2y = 1$
Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
If $z$ and $\omega $ are two non-zero complex numbers such that $|z\omega |\, = 1$ and $arg(z) - arg(\omega ) = \frac{\pi }{2},$ then $\bar z\omega $ is equal to
For a non-zero complex number $z$, let $\arg ( z )$ denote the principal argument with $-\pi<\arg ( z ) \leq \pi$. Then, which of the following statement (s) is (are) $FALSE$ ?
$(A)$ $\arg (-1- i )=\frac{\pi}{4}$, where $i =\sqrt{-1}$
$(B)$ The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of $R$, where $i=\sqrt{-1}$
$(C)$ For any two non-zero complex numbers $z_1$ and $z_2$, $\arg \left(\left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)\right.$ is an integer multiple of $2 \pi$.
$(D)$ For any three given distinct complex numbers, $z_1, z_2$ and $z_3$, the locus of the point $z$ satisfying the condition $\arg \left(\frac{\left( z - z _1\right)\left( z _2- z _3\right)}{\left( z - z _3\right)\left( z _2- z _1\right)}\right)=\pi$, lies on a straight line