Let $S$ be the set of all $\alpha  \in  R$ such that the equation, $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ has a solution. Then $S$ is equal to

  • [JEE MAIN 2019]
  • A

    $[3, 7]$

  • B

    $R$

  • C

    $[2, 6]$

  • D

    $[1, 4]$

Similar Questions

Consider the following two statements

$I$. Any pair of consistent liner equations in two variables must have a unique solution.

$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,

  • [KVPY 2018]

Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........

  • [JEE MAIN 2024]

Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1 .$ Then, the value of $p _{ n }^{2}$ is .... .

  • [JEE MAIN 2021]

The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is

The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .

  • [JEE MAIN 2021]