Let $S$ be the set of all $\alpha  \in  R$ such that the equation, $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ has a solution. Then $S$ is equal to

  • [JEE MAIN 2019]
  • A

    $[3, 7]$

  • B

    $R$

  • C

    $[2, 6]$

  • D

    $[1, 4]$

Similar Questions

If $x$ is real, then the value of ${x^2} - 6x + 13$ will not be less than

The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :

  • [JEE MAIN 2024]

The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is

  • [KVPY 2020]

Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?

$I$. For any $n$, the roots are distinct.

$II$. There are infinitely many values of $n$ for which both roots are real.

$III$. The product of the roots is necessarily an integer.

  • [KVPY 2016]

If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals