$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ થાય તો
$cot (10\ \theta )^o =1$
$cot (15\ \theta )^o =1$
$\cot {\theta ^o} = 0$
$\cot {\left( {15\ \theta } \right)^o} = \sqrt 3$
સમીકરણ $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ ની કિમત મેળવો.
સાબિત કરો કે : $\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
જો $\alpha ,\beta $ એવી રીતે આપેલ છે કે જેથી $\pi < (\alpha - \beta ) < 3\pi $. જો $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ તો $\cos \frac{{\alpha - \beta }}{2}$ ની કિમંત મેળવો.
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} = $ (કે જ્યાં $x$ એ બીજા ચરણમાં છે.)
જો $\sin 2\theta + \sin 2\phi = 1/2$ અને $\cos 2\theta + \cos 2\phi = 3/2$, તો ${\cos ^2}(\theta - \phi ) = $