2. Electric Potential and Capacitance
medium

$4 \;\mu \,F$ ના એક કેપેસીટરને 400 V સપ્લાય વડે વિદ્યુતભારિત કરવામાં આવે છે. પછી તેને સપ્લાયથી જુદું પાડીને બીજા વિધુતભારિત ન હોય તેવા $2 \;\mu \,F$ ના કેપેસીટર સાથે જોડવામાં આવે છે. પ્રથમ કેપેસીટરની કેટલી ઊર્જા ઉષ્મા અને વિદ્યુતચુંબકીય વિકિરણના રૂપમાં ગુમાવાય છે?

A

$2.67 \times 10^{-2} \;J$

B

$8.94 \times 10^{-2} \;J$

C

$1.33 \times 10^{-3} \;J$

D

$5.34 \times 10^{-3} \;J$

Solution

Capacitance of a charged capacitor, $c_{1}=4\, \mu \,F=4 \times 10^{-6}\, F$

Supply voltage, $V _{1}=200\, V$ Electrostatic energy stored in $C _{1}$ is given by,

$E_{1}=\frac{1}{2} C_{1} V_{1}^{2}$

$=\frac{1}{2} \times 4 \times 10^{-6} \times(200)^{2}$

$=8 \times 10^{-2} \,J$

Capacitance of an uncharged capacitor, $c_{2}=2\, \mu\, F=2 \times 10^{-6} \,F$

When $C _{2}$ is connected to the circuit, the potential acquired by it is $V _{2}$.

According to the conservation of charge, initial charge on capacitor $C _{1}$ is equal to the final charge on capacitors, $C _{1}$ and $C _{2}$ $\therefore V_{2}\left(C_{1}+C_{2}\right)=C_{1} V_{1}$

$V_{2} \times(4+2) \times 10^{-6}=4 \times 10^{-6} \times 200$

$V_{2}=\frac{400}{3} \,V$

Electrostatic energy for the combination of two capacitors is given by, $E_{2}=\frac{1}{2}\left(C_{1}+C_{2}\right) V_{2}^{2}$

$=\frac{1}{2}(2+4) \times 10^{-6} \times\left(\frac{400}{3}\right)^{2}$

$=5.33 \times 10^{-2} \,J$

Hence, amount of electrostatic energy lost by capacitor

$C _{1}= E _{1}- E _{2}=0.08-0.0533=0.0267$ $=2.67 \times 10^{-2} \;J$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.