- Home
- Standard 11
- Physics
$27^{\circ} \,C$ पर $1.8\, cm$ लंबे किसी ताँबे के तार को दो दृढ़ टेकों के बीच अल्प तनाव रखकर थोड़ा कसा गया है। यदि तार को $-39^{\circ}\, C$ ताप तक शीतित करें तो तार में कितना तनाव उत्पन्न हो जाएगा ? तार का व्यास $2.0\, mm$ है। पीतल का रेखीय प्रसार गुणांक $=2.0 \times 10^{-5}\; K ^{-1}$. पीतल का यंग प्रत्यास्थता गुणांक $=0.91 \times 10^{11} \;Pa$
$3.8 \times 10^{2}\; N$
$9.4 \times 10^{4}\; N$
$2.7 \times 10^{1}\; N$
$8.4 \times 10^{2}\; N$
Solution
Initial temperature, $T_{1}=27^{\circ} C$
Length of the brass wire at $T_{1}, l=1.8\; m$
Final temperature, $T_{2}=-39^{\circ} C$
Diameter of the wire, $d=2.0 mm =2 \times 10^{-3} m$
Tension developed in the wire $=F$
Coefficient of linear expansion of brass, $\alpha=2.0 \times 10^{-5} K ^{-1}$
Young's modulus of brass, $Y=0.91 \times 10^{11} Pa$ p://wuw tiwariacademy.com/
Young's modulus is given by the relation:
$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\frac{\Delta L}{L}}$
$\Delta L=\frac{F \times L}{A \times Y}$
$F=$ Tension developed in the wire
$A=$ Area of cross-section of the wire.
$\Delta L=$ Change in the length, given by the relation:
$\Delta L=\alpha L\left(T_{2}-T_{1}\right)$
$\alpha L\left(T_{2}-T_{1}\right)=\frac{F L}{\pi\left(\frac{d}{2}\right)^{2} \times Y}$
$F=\alpha\left(T_{2}-T_{1}\right) \pi Y\left(\frac{d}{2}\right)^{2}$
$F=2 \times 10^{-5} \times(-39-27) \times 3.14 \times 0.91 \times 10^{11} \times\left(\frac{2 \times 10^{-3}}{2}\right)^{2}$
$=-3.8 \times 10^{2} N$
(The negative sign indicates that the tension is directed inward.)
Hence, the tension developed in the wire is $3.8 \times 10^{2}\; N$