किसी बन्दूक से एक गोली क्षैतिज से $30^{\circ}$ की दिशा में ऊपर की ओर $280\,m s ^{-1}$ की चाल से दागी जाती है। गोली द्वारा तय की गई अधिकतम ऊँचाई $.....\,m$ है:$\left( g =9.8\,m s ^{-2}, \sin 30^{\circ}=0.5\right):$
$3000$
$2800$
$2000$
$1000$
एक गेंद क्षैतिज तल से $\theta$ कोण पर $15\,ms ^{-1}$ की चाल से इस प्रकार प्रक्षेपित की जाती है कि इसके द्वारा तय की गई दूरी एवं अधिकतम ऊँचाई का मान समान है, तो ' $\tan\, \theta$ ' का मान होगा:
$x - y$ तल ( $x$ क्षैतिज है एवं $y$ ऊपर की ओर उर्ध्व है) में मूल बिंदु से एक प्रक्षेप को $x$-अक्ष से $\alpha$ कोण बनाते हुए प्रक्षेपित किया जाता है। यदि मूल बिंदु से प्रक्षेपक की दूरी, $r=\sqrt{x^2+y^2}$, को $x$ के सापेक्ष अवलेखन किया जाए, तो $\alpha_1$ एवं $\alpha_2$ प्रक्षेपण कोणों के लिए $r ( x )$ दो अलग-अलग वक्र देता है (सलग्न चित्र देखिए) $\mid \alpha_1$ कोण के लिए $r ( x ), x$ के साथ क्रमशः बढ़ता रहता है। जबकि $\alpha_2$ कोण के लिए $r ( x )$ पहले बढ़ते हुए उच्चतम बिंदु पर पहुँचता है, फिर कम होने लगता है और एक न्यूनतम बिंदु पर पहुँचने के उपरान्त फिर से बढ़ने लगता है। इन दोनों व्यवहारों के बीच संक्रमण (switch) एक खास कोण $\alpha_{ c }\left(\alpha_1 < \alpha_{ c } < \alpha_2\right)$ पर होता है $\mid \alpha_{ c }$ का मान क्या है ? [वायु कर्षण को नगण्य मान लीजिए $\mid y(x)=x \tan \alpha-\frac{1}{2} \frac{\sec ^2 a}{v_0^2} x^2$, जहाँ $v_0$ प्रक्षेप की प्रारंभिक चाल है तथा $g$ गुरुत्वीय त्वरण है
जब किसी वस्तु को क्षैतिज तल से कोण $\theta$ पर $u$ वेग से प्रक्षेपित किया जाता है, तो उसके द्वारा क्षैतिज दिशा में तय की गयी अधिकतम दूरी होगी
$50$ मी/सै के वेग से एक पत्थर को $30°$ के कोण पर प्रक्षेपित किया गया है। $3$ सैकण्ड पश्चात् यह एक दीवार को पार कर जाता है। दीवार से .......... $m$ दूरी पर पत्थर जमीन से टकरायेगा $(g = 10$मी/सै$^2$)
यदि एक प्रक्षेप्य का प्रारम्भिक वेग दोगुना कर दिया जावे तथा प्रक्षेपण कोण वही रहे, तो उसकी महत्तम ऊँचाई